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In a previous note [l] with the above title, Coldwell demonstrated the manifestation 
of a defect in a special random number generator and discussed methods [2] to circumvent 
this defect. The purpose. of this note is to draw attention to other devices which may serve 
for the same intent. 

In [l], particle configurations had been generated by taking successive pseudo- 
random numbers as particle coordinates. With respect to the two-body correlation 
function, configurations generated in this way by RANDU turned out to behave 
more like a crystal than like an ideal gas. This behavior might have been expected 
from Marsaglia’s theorems [3, 41 in cases where the number of hyperplanes is far 
from the upper limit, even if each pseudorandom number is used only once as a 
particle coordinate as done in [l], whereas in [3, 41, each pseudorandom number is 
used n times where n is the dimension of the problem. 

In the following, three different approaches will be discussed to avoid harmful 
correlations introduced by the pseudorandom number generator in cases like that 
presented in [l]: (i) taking no additional precautions but minimizing correlations, 
(ii) destroying correlations by additional manipulations, (iii) using a generator pro- 
ducing points uniformly distributed in n-space. 

(i) Since one cannot get rid of the correlations if particle coordinates are formed 
from successive pseudorandom numbers of a generator of congruential type, one 
might try to make these correlations as small as possible. In the notation of [5], 
“oscillations” should be as rapid as possible, and exact prescriptions to this end 
concerning the choice of the multiplier value are given for three-space. Another 
measure of independence of pairs, triples,... of pseudorandom numbers is given by 
the spectral test [6, 71. In the notation of [7], quantities C, (n = 2, 3, 4,...) represent 
such a measure. If, for a particular generator, the C, value is close to the theoretical 
upper limit (C, = 3.63, C, = 5.92, C, = 9.87), then maximum independence 
(minimum correlation) of n-tuples has been achieved. There is no general prescription 
on how to choose multipliers in order to attain these maximum C, values. According 
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to [7], a generator has passed the spectral test, if C,, > 0.1, and passed the test with 
flying colors, if C, > 1.0 (n = 2, 3,4,...). The extremely small value of C, = 2.0 * 1O-5 
of the original version of RANDU as opposed to the good C, = 1.96 value indicates 
extreme correlations among triples generated by RANDU, as found in [1] and else- 
where. Multiplier value 65549 suggested in [8] to improve high order bit statistics 
is somewhat better in C, = 3.9 * 1O-2 (retaining a good C, = 3.13) but does not 
pass the spectral test according to [7], and in [5], this value is shown to “produce 
sufficiently rapid oscillations for some purposes.” This was found to be true in the 
test represented by the x2 value of the configurations in [l], see Table I, in which 
relevant information from Table I of [l] is reproduced and augmented by the results 
obtained with other generators and methods, along with additional information. 

The spectral test is known to be one of the most stringent tests for pseudorandom 
number generators of the congruential type. Although generally applicable, the x2 
value of configurations in [l] as a special test is much less sensitive to correlations if 
these are not extremely bad. This is demonstrated by the fact that only the x2 value 
of the configurations generated by the original RANDU is undoubtfully bad. For 
other multiplier values or methods, meaningful conclusions cannot be drawn from 
the single x2 value given in [l], in spite of the fact that 1000 configurations contribute 
to that value. This may easily be seen by using different initial values for complete 
runs of 1000 configurations. Thirty complete runs have been done by the author 
of this note, the range of x2 values encountered is given in Table I, and serves only 
to demonstrate this heavy dependence on the initial value. 

(ii) To destroy correlations across dimensions arising if successive pseudo- 
random numbers of the same generator are taken as particle coordinates, the following 
method [2] had been tested in [I]: Particle coordinates are still formed from successive 
pseudorandom numbers, but these numbers are generated by first filling a table of 
numbers produced by RANDU and then picking numbers from this table with 
65549 substituted for the multiplier value. To make coordinates even more random, 
a two-table fill had also been tested. Since multiplier values different from the original 
value 65539 had been chosen in the table pick, one might ask what kind of results 
would have emerged if these multiplier values had been used in the first place ? The 
answer is that in the particular example presented in [I], the correlations would have 
been invisible. 

Using successive pseudorandom numbers as coordinates of the same particle is 
simple and seems to be “natural,” but nobody is forced to do this. Decoupling the 
coordinates by using separate calling streams with different initial values for each of 
the coordinates is an alternative method which does not increase the amount of 
coding or cpu-time required, as opposed to the methods discussed in [l]. Although 
an unfortunate selection of the initial values (such that one of the initial values is 
a predecessor or successor of a few steps of one of the other initial values) may 
introduce undesirable correlations, this was not encountered in the 30 complete runs 
conducted by the author. The problem of choosing “correct” initial values avoiding 
overlap in the generated sequences is considered in [9] and requires solution of a 
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congruence equation to determine the relative shift of sequences with different initial 
values. 

Using calling streams with different initial values for the X, y, and z coordinate of 
course results in correlation of each of the three coordinates of successive particles, 
within a configuration and across configurations in the example of [l], if no new 
initial values are chosen for each configuration. But this correlation is restricted 
to one dimension, namely, x coordinates of successive particles are correlated 
according to x, = (6x, - 9x,) mod(l) [5] in the case of RANDU, and the same holds 
for the y and z coordinates. These correlations of each of the particle coordinates 
are harmless, since independent from each other (as long as the initial values are not 
predecessors or successors of a few steps of each other), contrary to the correlations 
across dimensions if one calling stream is used and successive pseudorandom numbers 
taken as coordinates of the same particle, resulting in the arrangement of all particles 
in planes. 

Using a different multiplier value in the separate calling streams as suggested by 
one of the referees will destroy correlations even more thoroughly, however, choosing 
alternate multiplier values may be hazardous if performance of these multiplier values 
is unknown and could be obtained only by additional extensive tests. 

The Seraphin generator [lo] is an extremely fast generator. Although originally 
published in assembler language, it may easily be implemented in FORTRAN. 
Furthermore, values of floating point pseudorandom numbers produced by the 
Seraphin generator are related to the corresponding integer values in an unconventional 
way due to the outstanding feat of the Seraphin generator for floating and trans- 
forming integer numbers to the unit interval in a single machine instruction. 

(iii) It should be kept in mind that all methods discussed so far only minimize 
or destroy correlations, but do not guarantee n-dimensional uniformity of pseudo- 
random points generated by these methods. A generator guaranteeing n-dimensional 
uniformity of pseudorandom n-tuples is the Tausworthe generator: [l 11. However, as 
in the case of congruential generators where the multiplier value has to be chosen 
carefully to avoid harmful correlations, choosing “good” feedback tabs of the 
Tausworthe generator is of vital importance [12, 131. Coding implementations of the 
Tausworthe generator are given in [14-161. Although only one-dimensional uniformity 
is predicted in using all 31 bits for a single number in the Kendall algorithm [14] 
with parameters as given in Table I, in this particular example, the effects of possible 
nonuniformity are inevident. 

CONCLUSIONS 

Avoiding harmful correlations introduced by a pseudorandom number generator 
may be done by various methods. These methods may be rated according to the 
cpu-time required and the performance in different tests. The test represented by 
the x2 value of configurations discussed in [I] is applicable only if the performances 
of the various methods are differing by orders of magnitude, due to the heavy 
dependence of the x2 value on the initial value in the particular example given in [l]. 
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